CAM 20163

Electrical Impedance Scanning of the Breast

Category:Medicine   Last Reviewed:September 2018
Department(s):Medical Affairs   Next Review:September 2999
Original Date:October 2003    

Description:
Electrical impedance scanning of the breast involves the transmission of continuous electricity into the body using either an electrical patch attached to the arm or a handheld cylinder. The electrical current travels through the breast, where it is then measured at skin level by a probe placed on the breast. Cancerous tissue conducts electricity differently than normal tissue; therefore, cancerous images may show up on the resulting imaging as a bright white spot. The T-Scan 2000 is an electrical impedance scanning device that received approval for marketing from the U.S. Food and Drug Administration (FDA) in 1999, with the following labeled indication:

"The T-Scan 2000 is intended for use as an adjunct to mammography in patients who have equivocal mammographic finding with ACR Bi-RADS categories 3 or 4. In particular, it is not intended for use in cases with clear mammographic or non-mammographic indications for biopsy. This device provides the radiologist with additional information to guide a biopsy recommendation."

The T-Scan 2000ED was designed to screen younger women (ages 30–39) for breast cancer in the primary care setting. The device is fundamentally the same as the T-Scan 2000; however, the post-processing software has been altered to maximize the specificity of the test. It reports a binary outcome indicating whether the woman is at increased risk of cancer at the time of the test (not over her lifetime). It provides a single result for both breasts combined and does not indicate where any questionable lesion is located. A positive result would have to be followed up by additional breast imaging. This device was reviewed by the FDA’s Obstetrics and Gynecological Devices Panel on Aug. 29, 2006, which recommended unanimously that it not "be approvable." The FDA has not approved the device.

Research is underway on combining electrical impedance scanning with mammography or tomosynthesis. (1) The use of electrical impedance scanning to diagnose non-malignant breast disease has also been studied, but apparently not with an FDA-approved device. The research used a multifrequency electrical impedance tomography device called MEM developed at the Russian Academy of Sciences; it has not received FDA approval. (2)

Policy:
Electrical impedance scanning of the breast is considered INVESTIGATIONAL.

Policy Guideline
In January 2004, a category III CPT code was introduced to specifically describe electrical impedance scanning of the breast

0060T: Electrical impedance scan of the breast, bilateral (risk assessment device for breast cancer)

The CPT category III code was discontinued 12/31/08 with instructions to use an unlisted CPT code 76499 beginning 1/1/09.

Benefit Application
BlueCard®/National Account Issues
State or federal mandates (e.g., FEP) may dictate that all devices approved by the U.S. Food and Drug Administration (FDA) may not be considered investigational and, thus, these devices may be assessed only on the basis of their medical necessity.

Rationale
Mammographic abnormalities can be stratified into categories called BI-RADS (Breast Imaging Reporting Data System), which reflect the risk of malignancy given the mammographic appearance. Scores range from 1 to 5 as follows::
BI-RADs Terminology

BI-RADs Score

Characteristics and Probability of Malignancy

 

1

No abnormality noted; probability of malignancy 0  

2

Benign finding (e.g., fibroadenomas, lipoma)  

3

 
Probably benign finding — Short follow-up suggested. Thiscategory includes lesions with high probability of being benign, but the radiologist would prefer to establish its stability, and, thus, repeat mammography at 6 months is typically recommended. The probability of malignancy is estimated at 2 percent  

4

 
Suspicious abnormality — Biopsy should be considered These lesions do not have the characteristic morphologies of breast cancer but have a definite probability of being malignant. The radiologist has sufficient concern to urge a biopsy. The probability of malignancy ranges from 2 percent–80 percent in this category  

5

Highly suggestive of malignancy The probability of malignancy ranges from 80 percent–100 percent  

Electrical impedance studies are used as an adjunct to mammography to improve patient selection for biopsy in patients with equivocal indications, i.e., those designated as a BI-RADS category 3 or 4. There are two potential scenarios:

1. To deselect patients for biopsy, where the key diagnostic statistic is the negative predictive value.

Presumably, this role of electrical impedance scanning would be focused on patients with a BI-RADS 4 lesion, for which biopsy is typically recommended. It may also apply to some patients with a BI-RADS 3 lesion who have been recommended to have a biopsy. The relevant question is whether patients with a BI-RADS 3 or 4 mammographic abnormality recommended for biopsy who have negative results on electrical impedance testing can reliably forgo breast biopsy. Given the relatively low morbidity and high diagnostic accuracy of the gold standard of breast biopsy coupled with the adverse consequences of missing or delaying diagnosis of breast cancer, the negative predictive value of electrical impedance testing would have to be extremely high to influence treatment decisions. The negative predictive value is determined partially by the sensitivity of the test; the higher the sensitivity, the higher the negative predictive value. The negative predictive value will also vary according to the prevalence of disease. Among a population of patients with mammographic abnormalities highly suggestive of breast cancer, the negative predictive value will be lower compared to a population of patients with mammographic abnormalities not suggestive of breast cancer. As noted, the labeled indication for the T-Scan focuses on its use in patients with equivocal mammographic findings.

2. To positively select patients for biopsy, where the positive predictive value is the key diagnostic parameter.

As noted, management options for patients with BI-RADS 3 lesions include watchful waiting with repeat mammography. However, positive results of electrical impedance may tip the balance such that biopsy is more definitively recommended.

The T-Scan 2000 was approved by the U.S. Food and Drug Administration (FDA) through the PMA process, and, thus, the clinical data to support its safety and effectiveness are available in the FDA summary of safety and effectiveness (3), which is reviewed here. The key pieces of data presented to the FDA were from a multicenter blinded study that intended to test the hypothesis that adjunctive combination of T-Scan with mammography can provide diagnostic accuracy significantly better than mammography alone. The results of this study were reported in terms of sensitivity and specificity instead of positive and negative predictive value.

The blinded study presented to the FDA consisted of a total of 2,456 patients, of whom 882 underwent biopsy and T-Scan. The mammography and T-Scan were performed in a blinded fashion; i.e., each imaging procedure was performed and interpreted without knowledge of the results from any other imaging modality or patient information. A final test set composed of 504 breasts that had undergone biopsy (179 malignant, 325 benign) was available for rereading (380 patients were excluded due to unavailability of the original mammogram or incomplete T-Scan image). The test set was reread and scored "blindly" using T-Scan images alone, using mammograms alone and using adjunctive combination of mammogram and T-Scan images. Each of the scores was compared against the results of biopsy. Panels of 40–60 patients each were organized for blinded rereading of the T-Scans and mammograms. The panels were composed of patients with both malignant and benign biopsy results, as well as screening patients who did not undergo biopsy. The screening patients were added to the panels so that the readers could not assume that all patients had suspicious mammographic findings. The key subgroup was composed of the 273 patients with equivocal mammographic abnormalities. These included BI-RADS 3 and some BI-RADS 4 cases, in which the probability of malignancy was estimated to be between 0 and 50 percent. Using biopsy results as the gold standard, the sensitivity of the combined mammogram and T-Scan compared to mammogram alone increased from 60 percent to 82 percent, while the specificity increased from 41 percent to 57 percent. Both of these are statistically significant increases. However, it is unclear from this study if these diagnostic parameters would enable patients with equivocal mammographic abnormalities to forgo biopsy. Recalculating the data reveals that the key parameter of the negative predictive value of the combined test is 93 percent. Therefore, if the decision to forego biopsy was based on a negative result of the combined mammogram and T-Scan, 7 percent of those with malignant lesions would miss or delay a diagnosis of breast cancer.

As noted, this study included some BI-RADS 3 or 4 lesions, but it is not specified whether the biopsies were performed in these subjects as part of the study protocol or based on clinical suspicion and/or imaging results. The analysis of diagnostic performance included only patients who were scheduled for biopsy, which introduces the potential for verification bias. It is uncertain whether these selected cases would be similar to unselected consecutive cases of BI-RADS 3 or 4 lesions that would not be referred for biopsy in clinical practice. The positive predictive value of adjunctive use of the T-Scan was reported to be 30 percent among subjects who had undergone biopsy and had BI-RADS 3 or 4 lesions and an 18 percent prevalence of malignancy. However, the limitations and potential bias in this analysis prohibit conclusions regarding the effectiveness of using the T-Scan in positively selecting patients for biopsy. For example, it is unknown how many of the original 2,456 patients had equivocal lesions and decided to forego biopsy. This is the critical group to evaluate the role of the T-Scan to positively select those patients for biopsy who would otherwise forego biopsy. While this unselected population and outcome are admittedly more difficult to study, ideally, one would like to design a trial in which all patients with equivocal lesions, who would otherwise be referred for follow-up imaging, undergo both T-Scan and biopsy or some other appropriate reference standard such as prolonged clinical follow-up. In this setting, the diagnostic performance and predictive value of T-Scan could be evaluated in the actual intended use.

The "intended use" study presented to the FDA consisted of 74 consecutive biopsy cases in which the T-Scan was approved for clinical use in its full intended mode; i.e., the T-Scan was targeted at lesions previously identified by mammography or physical examination, and the T-Scan interpretation was done adjunctively. Of these, there were a total of 36 cases for which biopsy results, mammograms and T-Scans were available and mammographic results were equivocal. The sensitivity of the mammography alone was 66.7 percent, increasing to 93.3 percent (28 of 30 cases) when the T-Scan was used adjunctively. The corresponding values of specificity were 50 percent, increasing to 83.3 percent (5 of 6 cases) when the T-Scan was added. The positive predictive value of adjunctive use of T-Scan was 97 percent (28 of 29 cases), although the prevalence of malignancy in this subgroup was also very high at 83 percent. Despite these positive findings, the small number of cases in this study ,along with the potential bias associated with the fact that analysis was restricted only to half of the subjects who received the reference standard, makes this evidence insufficient to draw conclusions.

Fuchsjaeger and colleagues further explored the adjunctive role of electrical impedance scanning (EIS) in 121 patients with 128 BI-RADS 4 lesions identified on mammography. (10) Specifically, the results of impedance imaging were compared with ultrasound as a technique of further classifying benign lesions such that patients could be managed as a BI-RADS 3 lesion with a recommended 6-month follow-up instead of biopsy. Therefore, in this setting, the most relevant statistic is the negative predictive value, which can be used to deselect patients from biopsy. Based on histopathologic findings from a subsequent biopsy, there were 37 malignant lesions and 91 benign lesions. The negative predictive value of impedance imaging was 97.1 percent versus 92.0 percent for ultrasound. It is unclear whether this diagnostic performance would be adequate to defer biopsy.

Stojadinovic and colleagues explored a novel role for impedance scanning as a primary screening technique in younger women (younger than 40 years) at average risk of breast cancer. (11) This indication has not been approved by the FDA. Currently, there are no specific screening recommendations other than breast self-examination in this population, in part due to decreased sensitivity of mammograms in imaging dense breasts, common in younger populations. Impedance scanning is based on the difference in electrical conductivity in benign versus malignant tissue and is not impacted by breast density. This study included 1,103 women who were undergoing screening with a clinical breast examination and women who were specifically referred for breast biopsy (the reasons for the referral were not stated). A total of 580 of the women were under 40 years old, the targeted age group for primary screening with electrical impedance scanning. Twenty-nine cancers were identified among the entire group of 1,103; of these, six were in women under 40. Based on this small number of cancers, the sensitivity and specificity of impedance scanning in women under 40 was 50 percent and 90 percent, respectively. It should also be noted that of the 580 in the under 40 group, 132 (23 percent) presented with palpable breast lesions, only two of the six identified cancers were nonpalpable and all cancers were found in women specifically referred for breast biopsy; none was found in the general screening population. As noted by the authors, this is a preliminary study, and further data with longer follow-up are needed. However, the authors hypothesize that impedance scanning could evolve into a routine part of a physical exam performed in a physician office setting. A positive scan would then prompt further imaging with either magnetic resonance imaging (MRI) or ultrasound.

In what appears to be a follow-up study, results were reported for 1,361 consecutively enrolled asymptomatic women ages 30–39 years (used to measure specificity) and 189 women ages 30-45 years who had a suspicious breast abnormality and were referred for biopsy (used to measure sensitivity). (12) The researchers assumed that none of the women in the first group had breast cancer and, consequently, that any positive EIS results were false positives; no follow-up data were collected on these women. In the second group of women with breast abnormalities, 59.3 percent were aged 40-45. The specificity in the first group was 95 percent (assuming that all positive results were incorrect); the specificity in the second group among women with benign breast disease was 80.7 percent. The sensitivity in the second group was 38 percent, but it ranged from 29 percent among women aged 30–39 to 42 percent among women aged 40-45. The authors concluded that the relative probability that a woman with a positive EIS result currently has breast cancer is 7.68 and that about one cancer would be detected for every 77 women referred for follow-up. This study has a number of limitations, including the assumption that none of the women in the specificity arm had cancer (the authors argue that this assumption is likely to have little impact on the overall results given the low prevalence of cancer in this population); the age difference between the two groups (and the difference in sensitivity by age, although whether this is statistically significant is not reported), and the measurement of sensitivity and specificity in two different populations. The authors themselves conclude that the results are encouraging but that "further large-scale, long-term follow-up studies are required and underway in the intended use populations." The FDA’s Obstetrics and Gynecological Devices Panel had a number of concerns about the study, and the FDA has not approved the device for this use.

In a later follow-up, Stojadinivoc and coworkers reported on 1,751 patients in the specificity group and 390 patients (with 87 cancers) in the sensitivity group. (13) The patients were recruited at 22 sites in the United States and 7 in Israel. The specificity calculated for the first group (assuming all positive test results were incorrect) was 94.7 percent (95 percent CI: 93.7–95.7 percent). One center had a specificity of 84 percent, while the others ranged from 89 percent to 97 percent. Sensitivity calculated for the second group was 26.4 percent (95 percent CI: 17.4-35.4 percent). The number of cancers at each site was small; the sensitivity per site ranged from 0 percent to 53 percent. Combining these results and the assumption that the prevalence of breast cancer in an average-risk group of women 30–39 years of age, the authors estimated that for every 136 women with a positive T-scan result, one would have cancer. If all T-scan-positive women in this age group underwent mammography, it is estimated that about 1 in 194 women would have cancer (this estimate is lower because of the less than perfect sensitivity of mammography). The authors state that this detection rate is higher than would be found among a randomly selected group of 30- to 39-year-old women or among women younger than 40 years of age with an affected first-degree relative (about one cancer detected in every 333 women). The relative probability of cancer in a T-Scan-positive woman is estimated to be 4.95 (95 percent CI: 3.16-7.14). These calculations apparently do not include the patients in whom T-Scans were attempted but not completed: 14 women in the specificity group and four women in the sensitivity group. Because of technical difficulties, 66 results in the second group were considered unreliable, but the authors argue that these problems might have been corrected if the examiners had not been blinded to the results and, therefore, were unaware of the problems; examiners in the specificity group were not blinded. The sensitivity of this test remains low, even in a group of women with a deliberately higher prevalence of cancer than would be expected in a screening population.

Further research has also been performed on the characteristics of electromagnetic breast imaging in distinguishing between normal breast tissue and abnormal tissue, and between cancerous and benign abnormal tissue. (14) EIS was 1 of the 3 electromagnetic imaging modalities used in women with mammography results rated as Breast Imaging Reporting and Data System (BI-RADS) category 1 (negative; 53 women) or category 4 (suspicious for malignancy) or 5 (highly suspicious for malignancy; 97 women in "abnormal" group). The focus was on a prospective, quantitative assessment of the contrast in electromagnetic properties between normal and abnormal tissue. EIS results were available for 62 "abnormal" cases and 36 normal controls; EIS data were not available for 19 cases due to technical difficulties and 33 cases due to analytical difficulties (data calibration). EIS was found to help in discrimination between normal and abnormal tissue but "may not aid" in distinguishing between cancer and other abnormal pathological findings. Using results from all three modalities examined (EIS, microwave imaging spectroscopy and near-infrared spectral tomography) did not substantially improve the ability to identify breast cancer.

BlueCard is a registered mark of this health plan. T-Scan and BI-RADS are not trademarks of this health plan.

References:

  1. Kao TJ, Boverman G, Isaacson D et al. Regional admittivity spectra with tomosynthesis images for breast cancer detection. Conf Proc IEEE Eng Med Biol Soc 2007; 2007:4142-5.
  2. Trokhanova OV, Okhapkin MB, Korjenevsky AV. Dual-frequency electrical impedance mammography for the diagnosis of non-malignant breast disease. Physiol Meas 2008; 29(6):S331-44.
  3. U.S. Food and Drug Administration. Summary of safety and effectiveness data: T-Scan 2000. April 1999. 
  4. Perlet C, Kessler M, Lenington S et al. Electrical impedance measurement of the breast: effect of hormonal changes associated with the menstrual cycle. Eur Radiol 2000; 10(10):1550-4.
  5. Martin G, Martin R, Brieva MJ et al. Electrical impedance scanning in breast cancer imaging: correlation with mammographic and histologic diagnosis. Eur Radiol 2002; 12(6):1471-8.
  6. Malich A, Bohm T, Facius M et al. Additional value of electrical impedance scanning: experience of 240 histologically proven breast lesions. Eur J Cancer 2001; 37(18):2324-30.
  7. Wersebe A, Siegmann K, Krainick U et al. Diagnostic potential of targeted electrical impedance scanning in classifying suspicious breast lesions. Invest Radiol 2002; 37(2):65-72.
  8. Malich A, Boehm T, Facius M et al. Differentiation of mammographically suspicious lesions: evaluation of breast ultrasound, MRI mammography and electrical impedance scanning as adjunctive technologies in breast cancer detection. Clin Radiol 2001; 56(4):278-83.
  9. Malich A, Fritsch T, Anderson R et al. Electrical impedance scanning for classifying suspicious breast lesions: first results. Eur Radiol 2000; 10(10):1555-61.
  10. Fuchsjaeger MH, Flory D, Reiner CS et al. The negative predictive value of electrical impedance scanning in BI-RADS category IV breast lesions. Invest Radiol 2005; 40(7):478-85.
  11. Stojadinovic A, Nissan A, Gallimidi Z et al. Electrical impedance scanning for the early detection of breast cancer in young women: preliminary results of a multicenter prospective clinical trial. J Clin Oncol 2005; 23(12):2703-15.
  12. Stojadinovic A, Moskovitz O, Gallimidi Z et al. Prospective study of electrical impedance scanning for identifying young women at risk of breast cancer. Breast Cancer Res Treat 2006; 97(2):179-89.
  13. Stojadinovic A, Nissan A, Shriver CD et al. Electrical impedance scanning as a new breast cancer risk stratification tool for young women. J Surg Oncol 2008; 97(2):112-20.
  14. Poplack SP, Tosteson TD, Wells WA et al. Electromagnetic breast imaging: results of a pilot study in women with abnormal mammograms. Radiology 2007; 243(2):350-9.

Coding Section

Codes Number Description
CPT 0060T Electrical impedance scan of the breast, bilateral (risk assessment for breast cancer) (code deleted 12/31/08)
  76499 Unlisted diagnostic radiographic procedure
ICD-9 Diagnosis        Investigational for all codes
ICD-10-CM (effective 10/01/15)    Investigational for all codes 
ICD-10-PCS (effective 10/01/15)    ICD-10-PCS codes are only used for inpatient services. There is no specific ICD-10-PCS code for the initiation or application of this therapy. 

Procedure and diagnosis codes on Medical Policy documents are included only as a general reference tool for each policy. They may not be all-inclusive.

Index
Breast Cancer, Electrical Impedance Scan
Electrical Impedance Scan
T-Scan

This medical policy was developed through consideration of peer-reviewed medical literature generally recognized by the relevant medical community, U.S. FDA approval status, nationally accepted standards of medical practice and accepted standards of medical practice in this community, Blue Cross and Blue Shield Association technology assessment program (TEC) and other non-affiliated technology evaluation centers, reference to federal regulations, other plan medical policies and accredited national guidelines.

"Current Procedural Terminology© American Medical Association.  All Rights Reserved" 

History From 2013 Forward     

09/10/2018 

Annual review, no change to policy intent. 

09/21/2017 

Annual review, no change to policy intent. 

09/19/2016 

Annual review, no change to policy intent. 

09/21/2015 

Added ICD-10 codes/statement to policy. 

01/21/2015

Annual review, no change to policy intent. Added guidelines and coding.

01/09/2014

Annual review. No changes.


Go Back